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ABSTRACT

In image guided surgery, stereo laparoscopes have been introduced to provide a 3D view of the organs during
the laparoscopic intervention. This stereo video could possibly be used for other purposes other than simple
viewing: such as depth estimation, 3D rendering of the scene and 3D organ modeling. This paper aims at
reconstructing 3D liver surface based on stereo vision technique. The estimated surface of the liver can later be
used for registration to preoperative 3D model constructed from MRI/CT scans. For this purpose, we resort to
a variational disparity estimation technique by minimizing a global energy function over the entire image. More
precisely, based on the gray level and gradient constancy assumptions, a data term and a local as well as a non-
local smoothness terms are defined to build the cost function. The latter is minimized, by using an appropriate
optimization technique, to estimate the disparity map. In order to reduce the disparity search range and the
influence of noise, the global variational approach is performed on the coarsest level of the multi-resolution
pyramidal representation of the stereo images. Then the obtained low-resolution disparity map is up-sampled
with a modified joint bilateral filtering method to the original scale. In vivo liver datasets with ground truth is
difficult to obtain, so the proposed method is evaluated quantitatively on two cardiac phantom datasets from
Hamlyn Center achieving an accuracy of about 2.2 mm for heart1 and 2.1 mm for heart2. Reconstructed points
up to 97% for heart1 and 100% for heart2 are obtained. Qualitative validation on in vivo porcine procedure’s
liver datasets has shown that our proposed method can estimate the untextured surfaces geometry well.

Keywords: surface reconstruction, variational, optimization, disparity up-sampling, stereo laparoscope, image
guided surgery, liver.

1. INTRODUCTION

In the past decade, with the technological advances in laparoscopic devices, medical imaging and the demand
for minimally invasive approaches have led to an increase in the number of laparoscopic resections.1 On one
hand, laparoscopic liver resection provides great benefits to patients, but on the other hand it increases the
operation difficulty because of the limited field of view, poor depth perception and lack of the sense of touch.
The technological advances in medical imaging and computing over the last twenty years enabled the use of
image-based navigation systems in surgery. These systems, ultimately based on image pre-processing, tracking,
visualization and 3D modeling techniques, increase the ability of the surgeon to perform surgery safely and
accurately. In order to provide a 3D view of the organ for the surgeons intra-operatively, stereo laparoscopes
have been introduced in image guided surgery. This can also be used to compute the depth information2,3 of the
organ or its surface by computer vision techniques which can be used to register to or update the preoperative
3D model constructed from MRI/CT scans.4 This technology does not require additional hardware comparing
to structured light or Time-of-Flight (ToF) based techniques.5

Stereo vision based surgical navigation has been developed for decades, as well as heart surface and abdominal
soft tissue surface reconstruction.6–10 Devernay et al.6 present a dense stereo reconstruction method by using
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normalized cross correlation and a hardware implementation which is regarded as the first work for minimally
invasive surgery.11 Later, some works are presented for the motion tracking of beating heart or the respiration
of lung where the deformation is from physiological motion: a parametric surface description is proposed in7 to
overcome the difficulties of homogeneous texture for the smooth stereo reconstruction. In,9 a Thin-Plate Spline
model is proposed to represent the heart surface deformations. Another group of works is based on feature
matching. Stoyanov et al.8 propose a semi-dense reconstruction approach for robotic assisted minimally invasive
surgery by first finding sparse matching features as seeds. Then a region growing method is used to propagate
disparity information around the seeds. The performance of this reconstruction method can be influenced much
by the initial feature points matching. Bernhardt et al.12 use three criteria to discard outliers and only keep the
most reliable matches. Their method shows robust results but has the risk of not enough matching points for
a homogeneous surface. Penza et al.13 apply a simple linear iterative clustering (SLIC) super-pixel algorithm
for disparity refinement to improve the initial block matching method’s matching percentage. Recently, in,14

Totz et al. propose an approach for liver surgery. They adapted the feature matching propagation method
proposed in8 to a multi-resolution pyramid with a vertical propagation strategy. They present a faster but
less accuracy results. Besides, global methods are also introduced for dense stereo reconstruction. A global
convex optimization based method for real time dense reconstruction is presented in.10 The proposed method
overcomes the staircasing effect, but computing speed can be degraded for high resolution images as a result of
the exhaustive search step of the approach. Allan et al.15 regard the disparity estimation as a labeling problem
on a Markov Random Field (MRF) and optimize it by a graph-cut algorithm which results in staircasing effect.

The lack of rich texture makes the feature matching process a challenging task in the context of laparoscopic
liver resection. For this reason, instead of using a local disparity estimation method, a global approach is
presented. In this paper, we first propose to use a variational disparity estimation method performed on a coarse
pyramid level of the image. Such approach has the advantages of avoiding incorrect disparity estimation in
texture-less areas and reducing the disparity search range as well as the error caused by noise. Besides, the
continuity property of variational method can eliminate the undesired staircasing effect. Then, the generated
low-resolution disparity map is up-sampled to the original scale.

This paper is organized as follows: Section 2 will introduce the proposed method. Section 3 will present the
reconstruction results and Section 4 is the conclusion and future work.

2. METHOD

2.1 Variational Disparity Estimation Method

2.1.1 Cost function

In this part, the left image is selected as a reference image for the estimation of the disparity map. As there is
not much occlusion during surgery if we only insert the camera into the human body, we could assume that the
gray values and gradient of the two corresponding pixels in the left and right images are the same. The stereo
images are undistorted and rectified, so search for stereo correspondences is performed only along the horizontal
axis. The data term of our cost function is then given by:

Edata(d) = |Il(i, j)− Ir(i− di,j , j)|2 + γ| 5 Il(i, j)−5Ir(i− di,j , j)|2

=
∣∣∣I[k]
l (i, j)− I[k]

r (i− di,j , j)
∣∣∣2 , (1)

where Edata represents the data term, Il and Ir are the left and right gray images respectively, 5 = (∂x, ∂y)> is

the spatial gradient operator, di,j is the disparity value for pixel (i, j). I
[k]
l is the left multi-channel data term,

defined as I
[k]
l = [Il, γIlx , γIly ]>, where Ilx , Ily are the partial derivatives of Il along the x and y dimensions

respectively, k denotes the channels. γ is a scalar to adjust weights between the gray images and its gradient

values in the data term. I[k]
r is defined in a similar way as I

[k]
l .

The organ surface is smooth, so we also can assume that the disparity is smoothly distributed:

Es(d) = | 5 d|2. (2)



We only consider the disparity value separately for every pixel locally so far, a non local regularization is a
wise choice to improve the performance as presented in.16 Therefore, we include a non-local term:

Enl =
∑

(i,j)∈Ωd

∑
(i′ ,j′ )∈Ni,j

∣∣∣di,j − di′ ,j′ ∣∣∣ , (3)

where Ωd ∈ R2 is the rectangular disparity map domain. Ni,j represents the neighborhoods of pixel (i, j). This
non-local term results in smoothness within a specific region defined by Ni,j which could denoise the intermediate
estimated disparity values and prevent outliers.16

Quadratic penalizer can be influenced too much by outliers, which would introduce large error for the regis-
tration part in a navigation system. So the Charbonnier penalty Ψ(x2) =

√
x2 + ε2 proposed in17 is chosen here

as it is differentiable and it is a robust convex function which shows promising performance in.16,18,19

The cost function is then defined as:

E(d) =Edata + λsEs + λnlEnl

=Ψ(
∣∣∣I[k]
l (i, j)− I[k]

r (i− di,j , j)
∣∣∣2) + λsΨ(|5d|2) + λnl

∑
(i,j)∈Ωd

∑
(i′ ,j′ )∈Ni,j

∣∣∣di,j − di′ ,j′ ∣∣∣ , (4)

where λs, λnl are parameters to adjust weights between data term, smooth term and non-local smooth term.

2.1.2 Optimization

The cost function in Eq. (4) is not convex, so instead of optimizing it directly, we use the heuristic median
filtering strategy for the non-local term16 and convex optimization approach for the other part.

The convex part of the cost function (Edata+λsEs) can be solved by a linearization and fixed-point iteration
method presented in,18 in which a coarse to fine with warping strategy is used. Since the warping optimization
approach is trying to build a linear system with two linearization steps, similarly to,19 we do not process gray
images and gradient part separately as presented in,18 but use a multi-channel data term as shown in Eq. (1)
for the purpose of a simple minimization implementation and a flexible definition of the data term. Then it is
possible to include more channels in the multi-channel image I[k] (for example the color value channels) without
increasing the optimization complexity.

In,16 the authors show that heuristic median filtering strategy can be regarded as a way of energy minimization
of a cost function with a non-local term. Therefore, we apply median filtering for every intermediate estimated
disparity. More details can be found in16,18 about the warping based optimization and median filtering strategy.

2.2 Disparity Up-sampling

After applying the global variational method on the image at the highest scale of the pyramid, the resulting low-
resolution disparity map d is up-sampled to the next pyramid level by a modified joint bilateral filter presented
in20 through Eq. (5). This process is repeated iteratively until we reach the original size of the image.

d̃p =
1

k′p

∑
q↓∈N

Iq↓f(‖p↓ − q↓‖) · [α(∆N)g(‖Ĩp − Ĩq‖) + (1− α(∆N))h(‖dp↓ − dq↓‖)], (5)

where d̃p is the upsampled disparity map. f , g, h are Gaussian functions, ‖·‖ is the Euclidean norm, Ĩ is the
high resolution color image which corresponds to the left (resp. right) image when the disparity is estimated
with respect to the left (resp. right) view. d is the low resolution disparity map. p and q are pixels in the high
resolution image, and p↓ and q↓ are pixels in the low resolution image/disparity map. N represents the spatial
neighborhood around p↓. We propose to define ∆N as the mean gradient magnitude in pixel neighborhood N

while it is the difference between the maximum and minimum value of N in.20 k
′

p is a normalizing factor. α is
a blending function which is defined as a sigmoid function (Eq. (6)), where τ is defined as the mean gradient
magnitude for the whole disparity map d here and ε can be defined experimentally.

α(4N) =
1

1 + e−ε·(4N−τ)
. (6)



A high α value makes the filter similar to a bilateral up-sampling filter which preserves the edges. If an area
is geometrically smooth but has a high value in the distance measurement on the color image (e.g. there are
different colors on the same surface), a bilateral filter will cause texture copy error, so a low α value is needed to

give higher weight to the disparity term h(‖dp↓− dq↓‖) and lower weight to the color image term g(‖Ĩp− Ĩq‖).20

Once the up-sampled disparity maps are obtained for both the left (d̃l) and right images (d̃r), a simple left
and right consistency check is performed (Eq. (7)): for the disparity of a particular pixel (i, j), the value is set

to invalid if the differences between d̃l and d̃r are higher than a predefined threshold value th.

d̂l(i, j) =

{
d̃inv, if

∣∣∣(∣∣∣d̃l(i, j)∣∣∣− ∣∣∣d̃r(i− d̃l(i, j), j)∣∣∣)∣∣∣ > th

d̃l(i, j), otherwise
, (7)

Then the surface is generated by using the standard triangulation technique.

3. EXPERIMENTAL RESULTS

The algorithm is validated on the publicly available datasets8,21,22 from Hamlyn Centre Laparoscopic / Endo-
scopic Video Dataset ∗ quantitatively and qualitatively. This research is mainly devoted to image guided liver
resection, as the lack of ground truth for in vivo liver datasets, cardiac phantom datasets heart1 and heart2 8,21

are used for quantitative evaluation and in vivo porcine liver datasets22 are used for qualitative evaluation.
The implementation is benefited from a source code provided by Sun et al.. †16 The input gray images are
preprocessed by highboost filtering to sharpen the detail of the original images:23

Ĩv = Iv + k(Iv − Īv), (8)

where Iv is the original left/right gray image, Īv denotes the blurred image by a Gaussian filter and k = 3.

3.1 Quantitative Evaluation

In this evaluation, the ground truth disparity and depth maps of the two stereo sequences (heart1 and heart1 )
are generated by CT data through manual registration. The stereo image pairs are undistorted and rectified
by the provided camera calibration parameters before perform the disparity estimation and reconstruction. The
main parameters used for the two datasets are: γ = 50, λs = 30, median filter size is [5, 5], number of warping per
pyramid level is 3 and linearization per warping is 5. Upsampling step’s window size is 3, ε is 0.5, up-sampling
factor is 4, which means the up-sampled disparity size is 4 times larger than the coarse level disparity’s size.

Prior to the accuracy evaluation of the proposed method, we choose the region of interest by removing the
dark background. An intensity threshold is used to remove the dark background (15 %). Besides, the region of
interest should be visible in both of the right and left images, so we crop the left image by 45 pixels at the left
side of the image. Fig. 1 shows an example of the original images (Fig. 1 (a) and (c)) and cropped images (Fig.
1 (b) and (d)) used for evaluation for datasets heart1 and heart2, the pixels marked with blue color are cropped
and not included for evaluation.

As the ground truth disparity maps are given for the original images, our estimated disparity values are
obtained from the rectified images, we can not compare the disparity values directly. Therefore, a standard
triangulation method is applied to calculate 3D point cloud for each pixel. The estimated depth values are then
compared to the rectified ground truth depth. We should note that the triangulation step will introduce error.
Mean Absolute Error (MAE, given by Eq. (9) ) between the ground truth depth y and the estimated one ŷ is
computed as a metric of accuracy.

MAE =
1

H ×W
∑

(i,j)∈Ω

|ŷ(i, j)− y(i, j)|, (9)

∗http://hamlyn.doc.ic.ac.uk/vision/
†http://cs.brown.edu/~dqsun/research/index.html#pubs/
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(a) (b) (c) (d)
Figure 1. The region used for evaluation (the left images selected from the first frame of the two datasets are shown as
an example here). (a) the original image from heart1 ; (b) the cropped image from heart1, the pixels marked with blue
color are cropped; (c) the original image from heart2 ; (d) the cropped image from heart2, the pixels marked with blue
color are cropped.

where H and W present the height and the width of the depth maps, Ω is the rectangular depth map domain
and y(i, j) indicates the depth value for a pixel (i, j). Percentage of matched pixels (% Match) is also used for
evaluation. As described in,13 % Match is defined as the ratio between the numbers of reconstructed points
and pixels of the region of interest of the image. Our proposed method is compared with a quasi-dense method
(QuasiDense)8 which is proposed for robotic assisted minimally invasive surgery and it performs well in terms
of accuracy in the comparison results presented in.14 Besides, a fast cost-volume filtering method (FCVF)24 is
also chosen for comparison which showed its potential for endoscopic scene reconstruction in the work presented
in.25

In Table 1, mean and standard deviation of MAE and % Match for the first 500 frames of heart1 and heart2
are reported. Our method has the lowest mean MAE error and highest % Match values. Although the MAE
values of our method and the QuasiDense are quite similar, our approach has higher % Match than QuasiDense.
An example of the obtained results is shown in Fig. 2, it can be seen that our approach produces smooth
disparity map close to the ground truth.

Table 1. MAE (mm) and % Match for phantom datasets heart1 and heart2.

heart1 heart2

Methods MAE(mm) % Match MAE(mm) % Match

Proposed Method 2.16± 0.65 97.25± 1.13 2.14± 0.83 99.96± 0.11

QuasiDense8 2.33± 0.61 78.64± 2.00 2.26± 0.52 80.64± 1.87

FCVF24 4.43± 0.81 95.96± 1.57 4.21± 1.20 88.92± 2.38

3.2 Qualitative Evaluation

Fig. 3 shows the reconstructed porcine liver surface from three different datasets captured by different stereo
laparoscopes. Surface estimation of those images is a quite challenging problem. Our method benefits from the
global estimation and the fill-in effect of variational methods which can have dense results. QuasiDense gives
sparse results for dataset1 and dataset3 with lots of noises, and fails to find proper match between left and right
images for dataset2 as shown in Fig. 3 (c). The results of FCVF are quite noisy as shown in Fig. 3 (d). On the
contrary of these two methods, the proposed one provides smooth and dense reconstructions in all cases. But
whether the estimated geometry fulfills the requirement for registration or not needs to be addressed further by
more accurate evaluation strategy.

4. CONCLUSION

In this paper, a dense liver surface reconstruction approach from stereo laparoscopic images is presented to
overcome lack of features problem in liver surgery. Experimental results show that our reconstruction method
can accurately estimate the surface geometry which will be used in following registration step for image guided



(a) (b) (c) (d)
Figure 2. Example of the disparity results for the first frame of heart1 and heart2. (a) Ground truth disparity map;
(b) disparity map estimated by our proposed method; (c) disparity map estimated by QuasiDense;8 (d) disparity map
estimated by FCVF.24

(a) (b) (c) (d)
Figure 3. Example of surface estimation results for in vivo porcine liver datasets. (a) Undistorted and rectified left image;
(b) surface estimated by our proposed method; (c) surface estimated by QuasiDense;8 (d) surface estimated by FCVF.24



liver resection system. Further improvements could be achieved in the future by focusing on the following
investigations: pre-processing of the stereo laparoscopic images, introducing more robust channels and non-local
term in the data term part, and taking into account edge information as well as occlusion in the energy function.
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